Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Trends Analyt Chem ; 161: 117000, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287168

ABSTRACT

The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.

2.
Biotechnol J ; 17(7): e2100304, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1400751

ABSTRACT

The programmable nature of sequence-specific targeting by CRISPR-Cas nucleases has revolutionized a wide range of genomic applications and is now emerging as a method for nucleic acid detection. We explore how the diversity of CRISPR systems and their fundamental mechanisms have given rise to a wave of new methods for target recognition and readout. These cross-disciplinary advances found at the intersection of CRISPR biology and engineering have led to the ability to rapidly generate solutions for emerging global challenges like the COVID-19 pandemic. We further discuss the advances and potential for CRISPR-based detection to have an impact across a continuum of diagnostic applications.


Subject(s)
COVID-19 , CRISPR-Cas Systems , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Endonucleases/metabolism , Gene Editing/methods , Humans , Pandemics
3.
Cell Host Microbe ; 29(5): 689-703, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1207013

ABSTRACT

Despite numerous viral outbreaks in the last decade, including a devastating global pandemic, diagnostic and therapeutic technologies remain severely lacking. CRISPR-Cas systems have the potential to address these critical needs in the response against infectious disease. Initially discovered as the bacterial adaptive immune system, these systems provide a unique opportunity to create programmable, sequence-specific technologies for detection of viral nucleic acids and inhibition of viral replication. This review summarizes how CRISPR-Cas systems-in particular the recently discovered DNA-targeting Cas12 and RNA-targeting Cas13, both possessing a unique trans-cleavage activity-are being harnessed for viral diagnostics and therapies. We further highlight the numerous technologies whose development has accelerated in response to the COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/isolation & purification , COVID-19/therapy , Humans , Mutation , RNA, Circular/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL